Theoretical Computer Science 43 (1986) 149-167

149
North-Holland

PARTIAL EVALUATION AND -COMPLETENESS OF
ALGEBRAIC SPECIFICATIONS *

Jan HEERING

Centre for Mathematics and Computer Science, 1098 SJ Amsterdam, The Netherlands

Communicated by R. Milner
Received January 1985
Revised December 1985

Abstract. Suppose P(x, y) is a program with two arguments, whose first argument has a known
value ¢, but whose second argument is not yet known. Partial evaluation of P(c, y) results (or
rather: should result) in a specialized residual program P,(y) in which ‘as much as possible’ has
been computed on the basis of ¢ In the literature on partial evaluation this is often more or less
loosely expressed by saying that partial evaluation amounts to ‘making maximal use of incomplete
information’. In this paper a precise meaning is given to this notion in the context of equational
logic, initial algebra specification, and term rewriting systems. If maximal propagation of incom-
plete information is to be achieved within this context, as a first step it is necessary to add equations
to the algebraic specification in question until it is w-complete (if ever). The basic properties of
w-complete specifications are discussed and some examples of w-complete specifications as well
as of specifications that do not have a finite w-complete enrichment are given.

1. Introduction

1.1. Partial evaluation

The current investigation was inspired by the notion of partial evaluation or mixed
computation as discussed, for instance, in [6] (which gives many references), and
in [11, 12]. Although rather vague in scope, partial evaluation is basically a form
of constant propagation. Suppose P(x, y) is a program with two arguments, whose
first argument has a known value ¢, but whose second argument is still unknown.
Partial evaluation of P(c, y) with unbound y results (or rather: should result) in a
specialized residual program P,(y) in which ‘as much as possible’ has been computed
on the basis of c¢. For instance, if P is a general context-free parser having as
arguments a grammar and a string, partial evaluation of P with known grammar G
and unknown string should lead to a specialized parser Ps by propagating G in P.

Partial evaluation is first and foremost an important unifying concept, shedding
light on the relationship between interpretation and compilation, on the possible
meaning of an ill-defined term like compile-time, on program optimization and
program generators in general, and on type checking. Secondly, it is a useful
technique in strictly limited and well-defined contexts in which the axioms and rules
required can be hand-tailored to the application at hand.

* Partial support received from the European Communities under ESPRIT project 348 (Generation
of Interactive Programming Environments—GIPE).

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

150 J. Heering

The notion of ‘computing as much as possible on the basis of incomplete informa-
tion’ is widespread in the partial evaluation literature. As Ershov puts it [6, p. 49]:
“A well-defined mixed computation which, in a sense, makes a maximal use of the
information contained in the bound argument yields a rather efficient residual
program.” And Komorowski says [12, p. 59]: ““Partial evaluation is a case of program
transformation. It attempts to improve efficiency of program execution by eliminating
run-time checks and performing as much computation in advance as possible. However,
it does not modify algorithms.” (Emphasis added in both cases.)

When experimenting with partial evaluation in the context of term rewriting
systems [10], one quickly discovers that making a maximal use of incomplete
information or computing as much in advance as possible is very difficult or even
impossible. The rewrite rules used to evaluate closed (i.e., variable-free) terms are
usually found to be inadequate when applied to open terms (i.e., terms containing
variables) and numerous new and more general rules have to be added if anything
like a canonical or in some sense simplest form is to be reached. Suppose, for
example, that the following simple term-rewriting system R for a function max on
the natural numbers with constant 0 and successor function S is given (with 1 = S(0)):

max(0, x) > x, max(x, 0) - x,
max(S(x), S(y)) » S(max(x, y)).

Partial evaluation of max(max(1, 1), x) to max(1, x) requires no new rewrite rules,
but for max(max(1, x), 1) the same result can only be obtained by applying the
commutative and associative properties of max, which are not needed for the
evaluation of closed max-terms. Similarly, R is unable to reduce max(x, x) to x or
max(S(x), x) to S(x). In a larger context this implies that a term like

if max(x, x) = x then E else E' fi

cannot be reduced to E. This may block yet another reduction, and so on.

In general, the additional rewrite rules required correspond to valid equations
from the viewpoint of initial algebra semantics [15]. In principle, new rules have
to be added as long as the term rewriting system is incomplete with respect to the
equational theory of the initial algebra in question. If, as a first step, one considers
equations instead of rewrite rules, this means that new equations have to be added
until the equational specification is complete with respect to the equational theory
of the initial algebra (if ever), i.e., until the equational specification is w-complete.
As a second step one then has to consider the compilation of w-complete
specifications to term rewriting systems. The latter step falls outside the scope of
this paper.

1.2. Algebraic specification, equational logic, and initial algebra semantics—some basic
facts

In this section we shall give a brief summary of some basic facts of algebraic
specification theory which are essential to an understanding of what follows. Good
references are [2, 15].

Partial evaluation and w-completeness 151

An algebraic specification S consists of two parts:

(i) a many-sorted signature 35, defining a language of strongly typed terms
(expressions), and

(ii) a set Es of equations (identities) between Zg-terms, defining an equational
theory consisting of all equations provable from Es by means of many-sorted
equational logic.

The rules of inference of equational logic are essentially the rules of reflexivity,
symmetry, transitivity, and substitution. Two more rules are needed if 35 has void
sorts—see [15, Section 4.3].

Models of algebraic specifications are many-sorted algebras A such that (the
interpretations of) all equations in Es are valid in A. This is the well-known
Tarski-semantics, but generalized to the many-sorted case.

If a Zs-equation is valid in all models of S, it is provable from Eg by means of
equational logic. This is the completeness property of many-sorted equational logic.
In general, however, one is not interested in the full class of models of an algebraic
specification, but only in a single model (or isomorphism class of models) which
is isomorphic to the algebra (the data type) one wishes to specify. The model closest
to ordinary programming practice is the initial algebra Is which is characterized by
the following two properties:

(i) every element of Is corresponds to at least one closed Zs-term (‘no junk’);

(ii) Is is maximally free, which means that elements of Is are never equal unless
the corresponding closed terms can be proved equal from Es (‘no confusion’).

Every algebraic specification (without void sorts) has an initial algebra which is
uniquely determined up to isomorphism.

1.3. w-Completeness of algebraic specifications

Because of the ‘no junk’ property, the initial algebra I of an algebraic specification
S almost always has a much richer equational theory than can be derived from the
equations Eg of S by means of equational logic alone, i.e., in general, equational
logic is not complete with respect to the initial algebra. Although the closed equations
valid in I5 can always be proved from Es using equational reasoning, open equations
valid in Is do not in general yield to such simple means of deduction, but require
stronger rules of inference (such as structural induction) for their proofs. For
instance, consider the following specification:

module BooL

begin
sort bool
functions F, T: - bool (false, true)
—1:bool-bool (not)
+ :bool X bool - bool (exclusive-or)

., V:bool xbool-bool (and, or)

152 J. Heering

equations " F=T
AT=F
T+F=F+T=T
F+F=T+T=F
T.T=T
TF=FT=FF=F
TvT=TvF=FvT=T
FvF=F

end BooL.

The initial model I3, is a Boolean algebra with two elements. Because every
closed term over Xy, is equal to T or F, proving the validity in I, of the laws
of Boolean algebra (such as De Morgan’s laws and the commutativity and associativ-
ity of +, ., and v) amounts to checking a finite number of closed instances for each
law to be proved. These laws are not provable from Eg,, by means of equational
reasoning, however, as can be easily seen by constructing a model of BooL in which
they are false.

Completeness with respect to the equational theory of the initial algebra can be
obtained in full generality by adding the so-called w-rule to equational logic. This
infinitary rule of inference allows one to infer an open 3s-equation e from a (possibly
infinite) set of premises consisting of the closed 2¢-instances of e. Using this extended
version of equational logic, the equations valid in the initial algebra Is can always
be proved from Ejs (even if they are not recursively enumerable!). Adding the w-rule
to equational logic has the general effect of making the class of models of a
specification smaller and of highlighting the role of the initial model.

The w-rule is rather unwieldy and the question arises whether it is possible to
achieve completeness of a specification with respect to the equational theory of its
initial algebra without transcending the limits of purely equational reasoning. More
specifically, given a specification S, is it possible to add equations to it in such a
way that (i) the initial algebra is not affected, and (ii) all open equations valid in
the initial algebra become provable by purely equational means?

We shall call a specification having property (ii) w-complete. We shall discuss the
basic properties of nonparametrized w-complete specifications (Section 2), give
some examples (Section 3), and, finally, sketch an approach towards automatic
addition of significant new equations valid in the initial algebra, i.e., automatic
(partial) w-enrichment (Section 4).

1.4. Related work

While revising this paper for publication, it was brought to my attention that the
notion of w-completeness as discussed in this paper was investigated by Paul [17]
in the context of ‘inductionless induction’ under the name inductive completeness.!

' 1 am indebted to P. Lescanne for pointing this out to me.

Partial evaluation and w-completeness 153

Paul gives several examples of inductively complete algebraic specifications and
their compilation to complete term rewriting systems. (Sections 3.1-3.2 of this paper).
He also shows that some specifications do not have a finite inductive closure, i.e.,
no finite w-complete enrichment.

Taylor’s survey [19] gives pointers to relevant work on (non)finitely based algebras
done in the context of universal algebra, while in [5, 7] the equational theory of the
natural numbers with addition, multiplication, and various other functions is dis-
cussed (Section 3.1 of this paper). Plotkin [18] has shown that the AKBn-calculus
is w-incomplete (Section 3.4 of this paper).

Because the terminology in this field is rather confusing, a brief comparative list
of terms used by various authors may be helpful:

- ‘Inductive completeness’ [17] = ‘w-completeness’ (this paper),

- ‘Inductive closure’ [17] = ‘w-complete enrichment’ (this paper),

- ‘Inductive closure’ [17]# ‘Inductive closure’ [16],

- ‘Inductive completion’ [9] = ‘Inductionless induction’ [15, Section 6.7],
‘Inductive completion’ [9] # ‘Inductive closure’ [17],

‘Inductive completion’ [9] # ‘Inductive closure’ [16].

1

2. The w-completeness property

Provable will always mean provable by purely equational means unless otherwise
noted. Only finite specifications are considered. The semantics of a specification
will always be the initial algebra semantics.

Definition 2.1. A finite algebraic specification S with signature Xs and set of Xs-
equations Eg is w-complete if every open equation all of whose closed Xs-instances
are provable from Eg, is itself provable from Eg.

Theorem 2.2. An algebraic specification S is w-complete if and only if all equations
valid in its initial algebra I are provable from Eg.

Proof. For any S the closed equations valid in I are precisely the closed equations
provable from Eg. Hence, the open equations valid in I are precisely the equations
all of whose closed instances are provable from Es. Hence, S is w-complete if and
only if not only every closed equation but also every open equation valid in Is is
provable from Es. O

Theorem 2.3. The equations valid in the initial algebra I of an w-complete specification
S are valid in all other models of S as well.

Proof. According to Theorem 2.2, the equations valid in Is are provable by purely
equational means. Hence, according to the soundness property of equational logic,
they are valid in all models of S. O

154 J. Heering

As explained in Section 1.3, open equations valid in the initial algebra of a
specification generally require for their proofs rules of inference that are stronger
than the simple rules of equational logic. Theorem 2.2 says that w-complete
specifications do not need these stronger rules of inference, i.e., they trade rules of
inference for equational axioms. As far as their proofs are concerned, the open
equations valid in the initial algebra of an w-complete specification can be treated
in the same way as their closed counterparts.

Theorem 2.4. If an algebraic specification S is w-complete, the set of equations valid
in its initial algebra I is recursively enumerable.

Proof. The set of equations valid in Is is equal to the set of consequences of Eg
according to Theorem 2.2. The latter set is recursively enumerable. O

Theorem 2.5. If an algebraic specification S is w-complete and if validity of closed
equations in the initial algebra I is decidable, validity of open equations in I is
decidable as well.

Proof. On the one hand, the set of equations valid in I is recursively enumerable
according to Theorem 2.4. On the other hand, each invalid open equation in Ig is
finitely refutable, because the set of all of its closed instances is recursively enumer-

able and the validity of closed equations in Is is decidable according to the second
assumption of the theorem. O

Neither Theorem 2.4 nor Theorem 2.5 uses any specific properties of equational
logic. In fact, their truth depends solely on the existence of a complete—but not
necessarily purely equational—theory of the equations valid in the initial algebra.

Given a specification S, is there always a specification T such that

(i) 2r=2s, Er2Eg;

(ii) Ir=Is;

(ili) T is w-complete?

Even if I is finite, the answer is no. Lyndon has given an example of a single-sorted
algebra with seven elements and one binary function, whose equational theory is
not finitely based (not finitely axiomatizable) [14]. With this result he settled the
question “Does every finite algebra possess a finite set of identities from which all
others are derivable?’ raised by him in [13]. As it has a (straightforward) initial
algebra specification, this also means that Lyndon’s algebra has no w-complete
initial algebra specification. Other examples are mentioned in [19, Section 9].

From an abstract data type viewpoint (but not necessarily from a strictly logical
viewpoint), it is quite natural to allow extension of the signature with hidden sorts
and functions. In that case w-completeness can be achieved for a wider class of
specifications. For instance, Lyndon’s above-mentioned algebra has an w-complete
initial algebra specification with addition and multiplication mod 7 as hidden func-
tions (see Section 3.2 for details).

Partial evaluation and w-completeness 155

Unlike the set of closed equations, the set of open equations valid in the initial
algebra of a (finite) specification need not be recursively enumerable. For instance,
the set of equations valid in the natural numbers with addition, multiplication, and
a <-predicate is not recursively enumerable (see Section 3.1). Such an algebra
cannot have an w-complete specification according to Theorem 2.4. Extension of
the signature does not help in such cases.

An obvious question is whether extension of the signature always helps if the
equational theory of the initial algebra is recursively enumerable.

OPEN QUESTION 2.6. Suppose the set of equations valid in the initial algebra Is of
an algebraic specification S is recursively enumerable. Does this imply the existence
of a specification T such that
(i) r2%;, Er2 Eg;
(iia) T is conservative with respect to the closed theory of S, i.e., for all closed
3s-equations e,

ET = e-‘-?ES e

(iib) for every closed 3r-term t of a sort belonging to Xg there is a closed Zs-term
t' such that

ET}_t::t,;

(iii) all equations valid in Is are provable from Er?
Note that T itself is not required to be w-complete. This would be an even stronger
requirement.

Consider a finitely generated algebra whose equational theory is recursively
enumerable. The subset of closed equations valid in such an algebra is a fortiori
recursively enumerable, and hence, according to [3, Theorem 4.1], it has a (finite)
initial algebra specification with hidden sorts and functions. Hence, if the answer
to Question 2.6 is affirmative, every finitely generated algebra with a recursively
enumerable equational theory has an w-complete initial algebra specification with
hidden sorts and functions.

If the answer to Question 2.6 is affirmative, a further question is whether the
hidden sorts can be dispensed with, that is, whether every specification has an
w-complete enrichment with hidden functions only. If the answer to this question
is also affirmative, one would like to conclude that every finitely generated algebra
with a recursively enumerable equational theory has an w-complete initial algebra
specification with hidden functions only. But this depends on yet another open
problem: it is unknown whether every finitely generated algebra whose closed
equational theory is recursively enumerable has an initial algebra specification with
hidden functions only (see [4]).

156 J. Heering

3. Examples

This section contains two examples of nonparametrized w-complete specifications
(Sections 3.1-3.2), a discussion of the conditional function from the viewpoint of
w-completeness (Section 3.3), and a brief discussion of the w-incompleteness of
strong combinatory logic and related questions (Section 3.4).

3.1. The natural numbers with addition and multiplication

A simple initial algebra specification of the natural numbers with addition and
multiplication looks as follows:

module NAT
begin
sort N
functions 0:-» N
S:N>N
+,.:NXN->N
variables x,y:» N
equations x+0=x (1)
x+8(y)=S(x+y) (2)
x.0=0 (3)
x8(y)=x+(xy) (4)
end NAT.

By adding the commutative, associative, and distributive laws for addition and
multiplication, an w-complete version of NAT is obtained:

module N
begin
include NAT
variables x,y,z:-> N

equations x+y=y+x (5)
xt(ytz)=(x+y)+z (6)
X.y=yXx (7)
x.(y.z) =(x.y).z (8)
x(y+z)=(xy)+(xz) 9)

end N.

Theorem 3.1 ([7]). N has the same initial algebra as NAT and is .w-complete.

Sketch of proof. (a) Iy= In., because (1) Zy= 2y, and (2) the commutative,
associative, and distributive laws for addition and multiplication are valid in Iy,r
(proof by multiple structural induction).

Partial evaluation and w-completeness 157

(b) For every open or closed Xy-term ¢, there is a 3y-term P in canonical
polynomial form such that Ey + ¢ = P. Canonical forms are generated ty the grammar

P:=0|sum,
sum:=M | (sum+ sum),
M::=5(0)|C|vars|(C.vars),
vars:=var | (vars.vars),
vari=x|y|- - -,
C:=5(5(0))] S(C),

with the additional condition that the number of monomials (maximal subterms
produced by M) is minimal. Canonical forms are unique modulo associativity and
commutativity of addition and multiplication. Two terms f, and ¢, are equal in Iy
if and only if the corresponding canonical forms P, and P, are syntactically identical
modulo the associative and commutative laws. Otherwise, there would be a nontrivial
polynomial with integer coefficients which would be identically equal to zero. [

In[17] a proof of Theorem 3.1 is given based on a complete term rewriting system
for N. If cut-off subtraction —: N x N > N defined by the equations

x=0=x,
0=x=0,
S(x)=S(y)=x=y

is added to NAT, the equations valid in the initial algebra of the resulting specification
NAT are not recursively enumerable [5, Section 8)]. Hence, according to Theorem
2.4, no w-complete specification of the natural numbers with addition, multiplication,
and cut-off subtraction is possible. The same result holds if a <-predicate is added
to NAT. (See also [17]. The same argument was used in [16] to show that equational
reasoning plus structural induction is not necessarily complete with respect to the
equational theory of the initial algebra.)

This shows that even in (seemingly) very simple cases complete partial evaluation
is impossible.

3.2. Boolean algebra

BooL of Section 1.3 is an w-incomplete specification of Boolean algebra. An
(almost) w-complete version of BooL is obtained by adding the equation S(S(x)) = x
to N. This treatment of Boolean algebra is very economical and leads to an interesting
canonical form for Boolean terms which is a direct descendant of the polynomial

canonical form for X-terms defined in the previous section. Consider the following
module.

module B
begin
include N with renaming [N —bool, 0— F, S+>]

158 J. Heering

functions T :-bool
v :bool X bool - bool
variables x, y:-bool

equations —1TIX =X (10)
xx=x (11)
T=~F (12)
xvy=(xy)+(x+y) (13)

end B.

The successor function of N becomes negation in B, addition becomes exclusive-or,
multiplication becomes conjunction, etc. Equation (10) corresponds to S(S(x)) = x.
Equation (11) has been added for the sake of w-completeness.

Theorem 3.2. B is an w-complete specification of Boolean algebra.

Proof. (a) Ig= Igs., because (1) 2g = Zgo0., (2) if € € Egoor, then Eg e and hence,
IzEe, and (3) if e€ Eg, then all closed 3g-instances of e are provable from Eggo.
and hence, Iy, Fe.

(b) (See also part (b) of the proof of Theorem 3.1.) For every open or closed
Xg-term ¢ there is a Zg-term P in canonical form such that Egt = P. Canonical
forms are generated by the grammar

P:=F |sum,

sum:=M | (sum +sum),
M:=T|vars,

vars:=var | (vars.vars),
vari=x|y| - -,

with the additional condition that the number of monomials is minimal and that
all monomials are linear. Canonical forms are unique modulo the associative and
commutative laws. Bringing a Zg-term into canonical form involves the following
steps (the equations of N with renaming [N —bool, 0— F, S~ —] are numbered
(1)-(9) in the same order in which they occur in N):

Step 1. Eliminate all occurrences of v and T by means of (13) and (12).

Step 2. Bring the resulting term into N-canonical form (Section 3.1) (taking the
renaming into account) by means of (1)-(9).

Step 3. (a) Reduce all coefficients to F or —F by means of (10). Eliminate all
coefficients of the form —1F by means of the equation —F.x = x (which is provable
from Eg). Replace monomials consisting only of —1F by T by means of (12).
Eliminate all monomials with coefficient F (except perhaps one) by means of (7),
(3), (5), and (1).

(b) Linearize all monomials by means of (7), (8), and (11).

Partial evaluation and w-completeness 159

(c) Eliminate all monomials occurring more than once by means of (5)-(8), the
equation x +x = F (which is provable from Eg), and (1).

Two terms t, and ¢, are equal in Iy if and only if the corresponding canonical
forms P, and P, are syntactically identical modulo the associative and commutative
laws. Otherwise, there would be a nontrivial P in canonical form such that Izy=P = F.
But if P is of the form —Q, it assumes the value T because either Q is F or it
assumes the value F if all variables have the value F. If P is not of the form —1Q,
consider a monomial g of P containing the least number of variables. Because
monomials do not occur more than once, every other monomial contains at least
one variable not occurring in g. If the variables occurring in g are given the value
T and all other variables the value F, P assumes the value T. [

The canonical forms used in the above proof are Hsiang’s ‘normal expressions’
[8]. Besides being the most natural ones from the present viewpoint, these canonical
forms have the further merit of being the normal forms of a complete term-rewriting
system which can be derived from B by a generalized Knuth-Bendix completion
procedure. Other known canonical forms, such as the complete disjunctive normal
form, do not have this property. Further details can be found in [8].

Paul [17] gives an w-complete specification of the integers mod p with addition
and multiplication (p prime) and proves Theorem 3.2 by taking p =2. (If p is not
prime, w-completeness is more difficult to achieve because the equation x” =x,
which corresponds to equation (11) of B, no longer holds and the existence of
zero-divisors gives rise to equations like 2x*+2x=0 (mod4) and x*+5x=0
(mod 6).) This result can be applied as follows. Consider Lyndon’s example of a
seven element algebra having no w-complete initial algebra specification without
hidden sorts and functions (Section 2). It has a straightforward initial algebra
specification:

module L

begin

sort A

functions 0,1,2,3,4,5,6:> A
AAXA->A

variable x:->A

equations A(4,1)=4
A(4,2)=A(5,1)=A(5,2)=A(5,3)=5
A(4,3)=21(6,1)=A(6,2)=A(6,3)=6
A0, x)=A(1,x)=A(2,x)=A(3,x)=0
Ax,0)=A(x,4)=A(x,5)=A(x,6)=0

end L.

Every k-ary function on a set of p elements (p prime) corresponds to a bolynomial
in k variables over the integers mod p. Take p=7 and let Z, be an w-complete
specification of the integers mod 7 with sort A, constants 0, ..., 6, and functions +

160 J. Heering

and ., then L has the following w-complete hidden function enrichment:

module L
begin
include Z,
hidden functions +, .
function A:AXA->A
variables x,y:—> A
equation A(x, y)=4.P,,(x,y)
+5.(Paa(x, y) + Ps(x, y) + Ps 5(x, y) + Ps 5(x, y))
+6.(Pas(x,)+ Pg(x, y) + Psa(x, y) + Ps 3(x, y))

6 6
where P, .(x,y)= [(x+i). [l (y+))
i=0,i+m#=0 j=0,j+n#=0

end L.
P, .(x, y) has the property
P,.(m,n)=1 and P,,.(x,y)=0 forx#m, y# n.

The above method of obtaining an w-complete hidden function enrichment applies
to all single-sorted algebras with p elements (p prime).

3.3. The conditional function

The following module contains a simple definition of a polymorphic conditional
function if:

module IF
begin

include B

variable o :-sorts

function if:boolxoXo->0o

variables u,v:->o

equations if(F, u, v) =v (14)

if(T,u,v)=u (15)

end IF.

Sort variable o ranges over all sorts occurring in the specification, i.e., if IF is
combined with a specification S, if : bool X o X ¢ - o expands into a nonpolymorphic
if; :bool X s X s > s for every sort s€ Xg. .

Let DIF be the union of IF and

module D
begin

sort data

functions d,, d,, ..., d,,:>data (m>1)
end D.

Partial evaluation and w-completeness 161

In DIF the if-function has two nonpolymorphic instances, namely ify,q:bool X
bool xbool - bool and if,,: bool x data X data - data.
D is trivially w-complete for m > 1, but in the degenerate case m =1 the equation
u =d, (with u a variable of sort data) is valid in I,. From now on m > 1 is assumed.
DIF is not w-complete. The equation

if(X, u,u)=u (%)

is an example of an equation which is valid in I, but not provable from Epg.
In conventional programming languages, for instance, equations (14) and (15) hold
but (*) does not, because the evaluation of X may loop or have side-effects.

The following version of IF is better from the viewpoint of w-completeness:

module [Fa
begin
include IF
variables o :- sorts
U, v, w.->o
X, Y, Z:>bool

equations if(X, u, v) =if(X, u, if(0X, v, w)) (16)
if(X, u, if(Y, v, w)) =if(0X.Y, v, if(X, u, w)) 17
if(X, u, if(Y, u, v)) =if(X v Y, u, v) (18)
if(X, if(Y, u, v), w) =if(X Y, u, if(X.1Y, v, w)) (19)
if(X,Y,Z)=(X.Y)+(1X.Z) (20)

end IFa.

Theorem 3.3. DIFa= D +IFa has the same initial algebra as DIF and is -complete.

Proof. (a) Ipiea= Ipie, because Tpir. = 2pir and all equations in Ep;g, are valid
in Ipg.

(b) If t is a Zpiea-term of sort bool, it can be brought into B-canonical form
(Section 3.2) because all ifs can be eliminated from ¢ by means of (20). If 7 is a
Spira-term of sort data containing distinct Boolean variables X, ..., Xi (k=0)
and distinct variables of sort data u,,...,w (I=0), it can be brought into the
canonical form 8, or

if(fn, 5,,, if(gn—l’ Bn—h L) lf(fl: 81, U) e)) (n 22)

The §&’s are constants or variables of sort data (i.e., elements of {d,,...,
d,, Uy, ..., u}), vis an arbitrarily chosen variable of sort data, and the &’s are
Boolean terms in B-canonical form such that
(i) 8% & (i#)),
(ii) & is not of the form F or T,
(i) && =a F (i%)),
(iv) Vis1&=s T.

162 J. Heering

Two canonical forms are equal in I g, if and only if they are syntactically identical
modulo commutativity and associativity of . and +, modulo the shuffling of (&, 8;)-
pairs, and modulo the choice of v.

It takes the following steps to bring a 3 g,-term of sort data into canonical form:

Step 1. Eliminate all Boolean ifs by means of (20).

Step 2. Eliminate all ifs from the second argument of other ifs by means of (19).

Step 3. Expand the innermost if(¢, 8, 8') (if it exists) into if(£, 8, if(—¢, &', v)) by
means of (16). The resulting term satisfies (iv).

Step 4. Merge all ifs whose second argument contains the same constant or
variable by means of (17) and (18). The resulting term satisfies (i).

Step 5. If at this point the canonical form in statu nascendi is of the form

if("]m ana if(nn—la 5n—l, seey 1f(7)la 519 U) o)) (n> 1)5
then turn it inside out, i.e., turn it by means of n(n—1) applications of (17) into
if(ela 61,) if(en—--l ’ 5"—1’ lf(ena 8", U)) s)7

with 6, =7,, 0,1 ="M Mn-1, On2="("1M0Nn_1)-(1Mn7n-2), €tc. The resulting
term satisfies (iii).

Step 6. Bring all 6,’s into B-canonical form ¢;.

Step 7. (a) If ¢ is of the form F for some i, eliminate the corresponding if and
8; by means of (14).

(b) If & is of the form T for some i, the term is of the form if(T, §, v) because
of property (iii) and Step 7(a). Reduce it to 8 by means of (15). The resulting term
satisfies (ii) and is in canonical form. O

Although, according to Theorem 3.3, [Fa is w-complete when combined with the

simplest possible D, w-completeness is lost if D is somewhat more complicated.
For instance, the equations

S3f(X, x, y)) =if(X, S(x), S(y)),
if(X, x, y).if(X, y, x) = x.y

are valid in Iy;r, but not provable from Eyg.. This can be remedied by adding
the distributive property of if to IFa:

module IFb
begin
include IFa
variables X :- bool
o, T:—>SOrts
Uvi>o
b.o0>71 :
equation P (if(X, u, v)) =if(X, ®(u), D(v)) (21)
end IFb.

Partial evaluation and w-completeness 163

Equation (21) is to be interpreted as follows. If IFb is combined with a specification
S, (21) expands into n separate instances for every n-ary function fe 3¢, g by

substitution of (Ax,)f(x,,..., X,..., x,) for @ (1<k=n). For example, one of
the instances of (21) is (f=if, k=2)

if(Y, if(X, u, v), w) =if(X,if(Y, u, w), if(Y, v, w)),

which is provable from Eg,.

Theorem 3.4. S+ 1Fb is w-complete for every w-complete specification S that does not
contain functions of one or more Boolean arguments or with a Boolean result.

Proof. Use for every sort s€ I a canonical form similar to the one used in the
proof of Theorem 3.3, but with §; a term of sort s in S-canonical form. To bring a
term into canonical form, follow Steps 1-7 of Theorem 3.3 with two additional steps
between Steps 1 and 2, and a slightly different Step 4"

Step 1.1. Move all ifs to outermost positions by means of (21).

Step 1.2. Bring all maximal if-free subterms (all of which are necessarily of the
same sort) into S-canonical form.

Step 4'. Merge all ifs whose second argument contains syntactically identical
S-canonical forms by means of (17) and (18). The resulting term satisfies (i). O

If S contains functions of Boolean arguments or with a Boolean result (as indeed
it will in all realistic cases), the selective action of the first argument of the if-function
gives rise to new equations and Theorem 3.4 fails. For instance, suppose an w-
complete specification S containing B is sufficiently-complete with respect to B, i.e.,
all closed Xs-terms of sort bool can be proved equal to T or F. Suppose further
that 2 contains a sort data and functions f, g:bool—data and h, k:bool xbool >
data. In that case some typical equations valid in Is,;m but not provable from
Es.\pp are

if(X, f(X), g(X)) =if(X, f(T), g(F)), (22)
if(X+ Y, h(X, Y), k(X, Y))=if(X + Y, h(X, 2 X), k(X, X)), (23)
if(X.Y, h(X, Y), k(X,Y))

=if(X.Y, h(T, T),if(X + Y, k(X, 1 X), k(F, F))). (24)

Contrary to equations (14)-(21), which are valid in Is. ¢ for all S satisfying the
sufficient-completeness requirement just mentioned, equations like (22)-(24) are
very much dependent on the particular S involved.

If interpreted as a left-to-right rewrite rule, equation (24) is typical of a whole
class of rules whose right-hand sides contain more ifs than their left-hand sides.
Application of such rules easily leads to terms containing an enormous number of
alternatives, because, in general, most of the new branches only lead to further
branches.

164 J. Heering

3.4. Combinatory logic
Consider the following algebraic specification of strong combinatory logic:

module CLX
begin
sort F
functions K,S:-»> F
.2FxF-F (application)
Note. The infix dot is not written and application associates
to the left, i.e., (K.x).y is written as Kxy, etc.
variables x,y,z:> F
equations Kxy=x
Sxyz = xz(yz)
S(S(KS)(S(KK)(S(KS)K)))(KK) =S(KK)
S(KS)(S(KK))
=S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK)))
S(K(S(KS$)))(S(KS)(S(KS)))
= S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS)
S(S(KS)K)(K(SKK)) =SKK
end CLX.

CLX is identical to CL+Ag, in [1]. Hence, according to [1, Theorem 7.3.14],
CLX is equivalent to the A KBn-calculus. The last four closed equations (the so-called
combinatory axioms) give CLX the extensional property, i.e., if, for two (possibly
open) X x-terms f and g not containing the variable x,

EcixFfx = gx,
then also
Ecx-f=g
Is CLX w-extensional? That is, does

Eq x—fa=ga for all closed a
imply

Ecix-f=g?
Plotkin has shown that the AKBn-calculus is not w-extensional [18; 1, Theorem
17.3.30]. Hence, CLX is not w-extensional either. As

w-completeness + extensionality=> w-extensionality, (25)

CLX is not w-complete. In fact, as far as CLX is concerned the notions of w-
extensionality and w-completeness are equivalent. This is not difficult to prove. In
view of (25) plus the fact that CLX is combinatorially complete, it is enough to
show that

combinatorial completeness + w-extensionality=> w-completeness. (26)

Partial evaluation and w-completeness 165

Consider a X x-equation f=g all of whose closed instances are provable from
Ecix. Assume further that f and g contain the same variables x,,..., x (k=1).
(If f contains a variable x not in g, then replace some variable or constant v in g

by Kux, etc.) By combinatorial completeness of CLX, there exist closed terms ¢
and ¢ such that

ECLxl—f=qu,...xk,g=d/x,...xk.

Applying w-extensionality k times gives

Ecix—¢ =4
Hence,

EcixFHox, ... X=Xy ... X
and

Ecx-f=¢g

This proves (26).
Two questions we have not succeeded in answering are the following.

OPEN QUESTION 3.5. Are the open equations valid in the initial algebra of CLX
recursively enumerable?

OPEN QUESTION 3.6. Does CLX have an w-complete enrichment in the sense of
Question 2.6?

If—as would be our guess—the answer to the first question is no, the answer to
the second question must also be no according to Theorem 2.4. If the answer to the
first question is yes, the second question is a special case of Question 2.6.

4. Towards automatic (partial) w-enrichment

Describing semantics by means of term rewriting systems has the advantage of
yielding evaluators that work on both closed and open terms. Their performance
on open terms (partial evaluation) is often disappointing, however, as many more
or less trivial simplifications of open terms are beyond the power of the rewrite
rules required for evaluating closed terms (Section 1.1). In such cases even rudimen-
tary w-enrichment may be rewarding, and the question arises whether this can be
done automatically. (Even if the answer to Question 2.6 is affirmative, partial
w-enrichment is the best one can hope for in many cases. See Section 3.1.)

While ‘inductionless induction’ or ‘inductive completion’ algorithms (Section 1.4)
can sometimes help in proving the validity of a given potential w-enrichment, they
do not help in suggesting significant new w-enrichments (or, for that matter, in
giving w-completeness proofs).

166 J. Heering

An approach we are currently investigating is automatic partial w-enrichment by
means of sets of enrichment rules. This roughly works as follows. An enrichment rule

P(Ula”-aama(pla“-a¢)n)—>E(Ols~'-aUm; ¢la"'a¢n)

is a specifiction rewrite rule consisting of a specification pattern P and an enrichment
scheme E. The signatures of P and E contain sort variables o; and function variables
&;. If P matches the specification to be enriched S, i.e., if there is an instance of P
which is a subspecification of S, the part of S matched by P is replaced by the
corresponding instance of the enrichment scheme E, possibly after renaming the
hidden sorts and functions introduced by E to avoid name clashes with the hidden
items of S. Special care has to be taken to ensure that enrichment steps are correct.

This approach has the advantage of being rather natural. Its success depends on
whether a large enough number of generally applicable enrichment rules can be
found and on whether the validity of enrichment steps can be guaranteed.

Acknowledgment

While writing this paper we had helpful discussions with Jan Bergstra, Paul Klint,
Jan Willem Klop, and Ed Kuijpers.

References

[1] H.P. Barendregt, The Lambda Calculus (North-Holland, Amsterdam, 1981).

[2] R.M. Burstall and J.A. Goguen, Algebras, theories and freeness: An introduction for computer
scientists, in: M. Broy and G. Schmiat, eds., Theoretical Foundations of Programming Methodology
(D. Reidel, Boston MA/Dordrecht, 198?) 329-348.

[3]1 J.A. Bergstra and J.V. Tucker, Algebraic specifications of computable and semi-computable data
structures, Rept. IW 115/79, Dept. Computer Science, Centre for Mathematics and Computer
Science, Amsterdam, 1979.

[4] J.A. Bergstra and J.V. Tucker, Initial and final algebra semantics for data type specifications: Two
characterization theorems, SIAM J. Comput. 12(2) (1983) 366-387.

[5] M. Davis, Y. Matijasevic and J. Robinson, Hilbert’s tenth problem: Positive aspects of a negative
solution, in: F.E. Browder, ed., Mathematical Developments Arising from Hilbert Problems (American
Mathematical Society, Providence, RI, 1976) 323-378.

[6] A.P. Ershov, Mixed computation: Potential applications and problems for study, Theoret. Comput.
Sci. 18 (1982) 41-67.

[7] L. Henkin, The logic of equality, Amer. Math. Monthly 84 (1977) 597-612.

[8] J. Hsiang, Topics in automated theorem proving and program generation, Rept. UIUCDCS-R-82-
1113, Dept. Computer Science, Univ. Illinois at Urbana-Champaign, 1982.

[9] G. Huet, G. and J.M. Hullot, Proofs by induction in equational theories with constructors, J.
Comput. System Sci. 25 (1982) 239-266.

[10] G. Huet and D.C. Oppen, Equations and rewrite rules: A survey, in: R.V. Book, ed., Formal
Languages: Perspectives and Open Problems (Academic Press, New York/London, 1980).

[11] N.D. Jones, P. Sestoft and H. Sgndergaard, An experiment in partial evaluation: The generation
of a compiler generator, Rept. 85/1, Institute of Datalogy, Univ. Copenhagen, 1985.

[12] H.J. Komorowski, A Specification of an Abstract PROLOG Machine and its Application to Partial
Evaluation, Dissertation No. 69, Linkdping University, 1981.

Partial evaluation and w-completeness 167

[13] R.C. Lyndon, Identities in two-valued calculi, Trans. Amer. Math. Soc. 71 (1951) 457-465.

[14] R.C. Lyndon, Identities in finite algebras, Proc. Amer. Math. Soc. 5 (1954) 8-9.

[15] J. Meseguer and J.A. Goguen, Initiality, induction, and computability, in: M. Nivat and J. Reynolds,
eds., Algebraic Methods in Semantics (Cambridge University Press, London, 1986).

[16] F. Nourani, Or induction for programming logic: Syntax, semantics, and inductive closure, Bull.
European Assoc. Theoret. Comput. Sci. 13 (February 1981) 51-64.

[17] E. Paul, Proof by induction in equational theories with relations between constructors, in: B.
Courcelle, ed., 9th Coll. on Trees in Algebra and Programming (Cambridge University Press, London,
1984).

[18] G.D. Plotkin, The A-calculus is w-incomplete, J. Symbolic Logic 39 (1974) 313-317.

[19] W. Taylor, Equational logic, Houston J. Math., Survey 1979.

